Approximate Bayesian Computation: a nonparametric perspective

نویسنده

  • Michael G.B. Blum
چکیده

Approximate Bayesian Computation is a family of likelihood-free inference techniques that are tailored to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics from the data and giving more weight to the values of the parameters for which the simulated summary statistics resemble the observed ones. In this paper, we present Approximate Bayesian Computation as a technique of inference that relies on stochastic simulations and non-parametric statistics. We derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a smaller number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. Last, we present model selection in Approximate Bayesian Computation and provide asymptotic properties of two estimators of the model probabilities. As for parameter estimation, the asymptotic results raise the importance of the curse of dimensionality in Approximate Bayesian Computation. Performing numerical simulations, in a simple normal model, confirms that the quality of the estimators deteriorates as the number of summary statistics increases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Nonparametric Hierarchical Models

Bayesian models involving Dirichlet process mixtures are at the heart of the modern nonparametric Bayesian movement. Much of the rapid development of these models in the last decade has been a direct result of advances in simulation-based computational methods. Some of the very early work in this area, circa 1988-1991, focused on the use of such nonparametric ideas and models in applications of...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Using POMDPs to Forecast Kindergarten Students' Reading Comprehension

Using POMDPs to Forecast Kindergarten Students’ Reading Comprehension . . . . . . . . . . . . . . . . . . . . 1 Russell Almond, Umit Tokac and Stephanie Al Ortaiba High-Level Information Fusion with Bayesian Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Paulo Costa, Kathryn Laskey, Kuochu Chang, Wei Sun, Cheol Park and Shou Matsumoto Goal-Based Person T...

متن کامل

New insights into Approximate Bayesian Computation

Approximate Bayesian Computation (abc for short) is a family of computational techniques which offer an almost automated solution in situations where evaluation of the posterior likelihood is computationally prohibitive, or whenever suitable likelihoods are not available. In the present paper, we analyze the procedure from the point of view of k-nearest neighbor theory and explore the statistic...

متن کامل

Bayesian nonparametric predictions for count time series

In this paper we introduce a Bayesian nonparametric methodology for producing coherent predictions of count time series using the INAR(1) process. Our predictions are based on estimates of the p-step ahead predictive mass functions assuming a nonparametric prior for the distribution of the error term having large support on the space of discrete probability mass functions. An efficient Gibbs sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009